1.Relation and Function
hard

જો $f\left( x \right) = {\log _e}\,\left( {\frac{{1 - x}}{{1 + x}}} \right)$, $\left| x \right| < 1$, તો  $f\left( {\frac{{2x}}{{1 + {x^2}}}} \right)$ મેળવો.

A

$2f\left( x \right)$

B

${\left( {f\left( x \right)} \right)^2}$

C

$2f\left( x^2 \right)$

D

$ - 2f\left( x \right)$

(JEE MAIN-2019)

Solution

$f\left( x \right) = {\log _e}\left( {\frac{{1 – x}}{{1 + x}}} \right),\left| x \right| < 1$

$f\left( {\frac{{2x}}{{1 + {x^2}}}} \right) = \ell n\left( {\frac{{1 – \frac{{2x}}{{1 + 2{x^2}}}}}{{1 + \frac{{2x}}{{1 + {x^2}}}}}} \right)$

$ = \ell n\left( {\frac{{{{\left( {x – 1} \right)}^2}}}{{{{\left( {x + 1} \right)}^2}}}} \right) = 2\ell n\left| {\frac{{1 – x}}{{1 + x}}} \right| = 2f\left( x \right)$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.