જો $f\left( x \right) = {\log _e}\,\left( {\frac{{1 - x}}{{1 + x}}} \right)$, $\left| x \right| < 1$, તો  $f\left( {\frac{{2x}}{{1 + {x^2}}}} \right)$ મેળવો.

  • [JEE MAIN 2019]
  • A

    $2f\left( x \right)$

  • B

    ${\left( {f\left( x \right)} \right)^2}$

  • C

    $2f\left( x^2 \right)$

  • D

    $ - 2f\left( x \right)$

Similar Questions

નીચેનામાંથી ક્યુ વિધાન સાચુ છે?

વિધેય $f(x) = \frac{x}{{1 + \left| x \right|}},\,x \in R,$ નો વિસ્તાર મેળવો. 

  • [AIEEE 2012]

જો $f(x) = \log \left[ {\frac{{1 + x}}{{1 - x}}} \right]$, તો $f\left[ {\frac{{2x}}{{1 + {x^2}}}} \right]  =$

વિધેય $f(x) = \;[x]\; - x$ નો વિસ્તાર મેળવો.

નીચેનામાંથી ક્યુ સાચુ છે ?